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Feedback Linearization Control of the Looper System in 
Hot Strip Mills 
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This paper studies on the linearization of a looper system in hot strip mills, that plays an 

important role in regulating a strip tension or a strip width. Nonlinear dynamic equations of the 

looper system are analytically linearized by a static feedback linearization algorithm with a 

compensator. The proposed linear model of the looper is validated by a comparison with a 

linear model using Taylor 's  series. It is shown that the linear model by static feedback well 

describes nonlinearities of the looper system than one using Taylor 's  series. Furthermore, it is 

shown from the design of  an ILQ controller that the linear model by static feedback is very 

useful in designing a linear controller of the looper system. 

Key W o r d s : H o t  Strip Mills, Looper, Linearization by Taylor  Series, Linearization by Static 

Feedback, ILQ (Inverse Linear Quadratic optimal control) 

1. In troduct ion  

Using a linearization technique by static feed- 

back, this paper studies on the development of a 

mathematical model for a looper control system 

in hot strip mills. The looper located in each 

stands of hot strip mills regulates a strip tension 

and a strip flow, and is irregularly varied by an 

unbalanced speed of main work rolls. In particu- 

lar, since a strip width is mainly influenced by a 

strip tension, the looper plays an important role 

in controlling a strip width. Thus, it is very im- 
portant to develop a high performing looper con- 

trol system. Many researchers have proposed var- 

ious control techniques derived from linear and 

nonlinear algorithms (Kim and Hwang, 2002). 
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Most control algorithms applied to the actual 

looper system are PID or non-interference con- 

trol (Anbe et al., 1996; Imanari et al., 1997; 

Hesketh et al., 1998). However, it is well known 

that these possess many technical defects in view 

of control performances. Recently, various studies 

on high class control algorithms such as LQ/  

L Q G / H  ® optimal control, nonlinear control, 

adaptive, neural network and artificial intelli- 

gence are accomplished (Price, 1973; Hearns et 

al., 1996; Hearns and Grimble, 1997: Asano et 

al., 2000). Among these control algorithms, it is 

well known from experimental results that linear 
optimal control algorithms (LQ, H ~*) are feasible 

to control the looper (Asano et al., 2000). The 

control performance of each linear controller, 

however, mainly depends on the accuracy of  a 

linear model. Thus, the goal of this paper is to 

develop a new mathematical model of the looper 
system for linear control. 

When the looper system is strictly described by 

a mathematical model, it would contain strong 

nonlinearities. A mathematical model for linear 
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control is generally obtained from the approxi- 

mation of Taylor  series. The linear model is use- 

ful only within a small interval at the neighbor- 

hood of an operating point, and it does not well 

describe the nonlinearity of the system dynamics. 

Furthermore, it is very difficult to validate ap- 

proximation errors of the model, and to adjust 

system gains. This paper develops a linear model 

of the looper system using a linearization tech- 

nique by static feedback to solve these problems. 

A basic idea is that nonlinear terms in dyna- 

mics of the looper are eliminated by new control 

inputs obtained from the state feedback of  a 

nonlinear system. There are many studies per- 

formed on a feedback linearization (Jakubzyk 

and Respondek, 1980 ; lsidori  and Ruberti, 1984 ; 

Falb  and Wolovich, 1967). This paper shows a 

methodology with a linear model for the looper 

using the results of Falb and Wolovich. 

The contents of this paper are as follows : In 

Section 2, the nonlinear dynamics of  the looper 

system is introduced, and a linear model is con- 

structed by a static feedback linearization algo- 

rithm as described in Section 3. In Section 4, the 

validation of  the linear model is accomplished by 

computer simulation using MATLAB 6.1. The 

linear model is characterized then by the compar- 

ison with a nonlinear model, and usefulness of  

the obtained model is validated by applying the 

feedback linearization model for ILQ control. 

Finally, the conclusions are briefly described. 

2. Dynamics of a Looper System 

We consider a looper system given in Fig. 1. Its 

dynamic equations are composed of dynamic 

(i) stand (i+l) stand 
I F ~ ' 2 ~ F  T ', 
i J I 

Fig. 1 A schematic diagram of the looper system 

equations of the looper and the strip tension, 

respectively (Price, 1973). 

2.1 Dynamic equation of a looper 
From Newton's second law, the dynamic equa- 

tion of  the looper is given as fol lows:  

i d2 0 L ~ - ~ =  T,m- T,+ wo( t) (1) 

where Ttm and Tl denote a drive motor torque 

and a total load torque of  the looper, respectively. 

we(t) is the modeling error. Tz is given by 

Tt = T s +  T~w+ T ~ +  T ,  (2) 

where Ti, Tsw, Ttw and Ta are load torques 

induced from a strip tension, a strip weight, a 

weight of a looper rol l /arm,  and the friction force 

between the looper roll and the strip, respectively. 

In Eq. (2), unmodelled dynamics such as a strip 

bending force etc. are included in the modeling 

errors we(t). Note that the details are referred to 

the reference (Kim and Hwang, 2002). 

2.2 Dynamic equation of a strip tension 
From Hook's  law, a strip tension (r) within an 

elastic limit is described as in Eq. (3). 

dr dO 
dt =F , [F3(O)~{ - -F , ( r )  --v~(t) - w ~ ( t )  ] (3) 

In Eq. (3), F z ( = E / L )  denotes the ratio of a 

strip Young's modulus (E)  to a strip length 

(~( t )  + L ) .  F3 (0 ) ,  F4(r)  and re(t) are repres- 

ented as the difference between the geometric strip 

length and the actual strip length, the effect factor 

for a strip speed, and the difference between strip 

speeds going out from the backward stand and 

coming to the forward stand, respectively, w~ (t)  

denotes the unmodelled dynamics. 

Note that ~ ( l )  is the variation of  a strip length 

caused by the difference between a strip speed 
going out from the backward stand and the strip 

speed coming to the forward stand. As a rule, 

~ ( t )  is ignored since it is very small in compari-  

son with the distance (L) between two stands. 

While the Young's modulus (E)  depends on ma- 

terial characteristics, it is assumed as a constant. 
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The details about the parameters are referred to 

the reference (Kim and Hwang, 2002). 

2.3 Dynamic equations of actuators 

In hot strip mills, control inputs are given as a 

motor torque ( T  tin) of  the looper and a speed 

difference of the strip (re). They are respectively 

controlled by LCC (Looper Current Controller) 

and ASR (Automatic Speed Regulator) in actual 

plant. LCC and ASR are regarded as actuators in 

this paper, and represented by the first-order 

delay systems. Thus, dynamics equations of LCC 

and ASR are given by Eq. (4). 

dT~m(t) =-kmTem(t) +k~ul(t) 
dt 

(4) 
dye(t) =-k~ve(t) +kau2(t) 

dt 

In Eq. (4), u2(t) and denote the inputs to LCC 

and ASR. Whereas km and ka are the reciprocals 

of  the time constants of the LCC and ASR, 

respectively. 

Figure 2 shows the block diagram of the looper 

system, where a gear ratio of  the looper drive 

motor, Gr, a cross-sectional area of  strip, As, and 

a second inertia moment of  the looper, fz, are 

.6: 

Fig. 2 Block diagram of the looper system 

also shown. 

3. Linearization of the Looper System 
by Static Feedback Algorithm 

3.1 Basic idea of a feedback l inearization 

Consider a nonlinear system given as 

ttl 

x = f  (x) + ~g,(x) u ,= /  (x) +g(x) u, (5) 
x ~ g  ~, u ~ R ' ,  f (o) = 0  

Assuming that the system given in Eq. (5) is 

controllable, it can be represented as a linear 

system of  Eq. (6) by introducing a new state 

variable (z) and a control input (v) as 

2 = A z + ~ B ~ ( x )  v ~ = A z + B v  (6) 

z E R  ~, v ~ R  ~ 

Provided a coordinate transformation, z = S  (x) ,  

and a feedback u=ct(x) -I-l~(x) v exist, the non- 

linear system of  Eq. (5) can be linearizable by 

feedback (Lee, 2001). Fig. 3 represents the block 

diagram of the static feedback linearization sys- 

tem. 
Note that the linear system obtained by static 

feedback can be transformed into a linear model 

LinearSystem 
I- . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 
I I Coordinate 
I S t a t i c  Feedback Nonlinear System Trans[ormztlon I 

I 
I -  . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 

Fig. 3 Block diagram of a static feedback 
linearization 

- - ~  C o m p e n s a t o r  

I-- 
|.lnear System 

I Coordinate 
Static Feedbnck Nonlinear System Transformation I 

~ ' ~  U=C~(X)+I~(XIv ~ ' ~ C  = f ( x ) + g ( X ) U ~  

i 
Fig. 4 Block diagram of a static feedback linearization with a compensator 
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with a Brunovsky canonical form. Then, the lin- 

ear model becomes unstable since it has all zero 

eigenvalues. Thus, a new compensator should be 

added to the system of Fig. 3 as shown in Fig. 4. 

The linear model becomes stable conseguently. 

Note that feedback linearization is achieved 

from the elimination of nonlinear terms in a new 

control input obtained from the feedback of state 

variables in the nonlinear system. The details are 

referred as the reference (Lee, 2001). 

3.2 Feedback l inearization of the looper 
system 

In Eqs. (1), (3) and (4), we define state and 

input-output  variables as fol lows:  

x=[O V r To~ v,] r 
y=[O r] r, u=[ul u2] r (7) 

w=[w.  wd ~ 

Then, a state-space equation of  the looper is 

given 

d f2 0 

d t X = A X +  0 

tq l A o ko] 
[ 1 0 0 0 0 ]  

y =  X 
0 0 1 0 0  

where, 

A =  
A 
A 

[°il l /A  o 
u +  0 -F~ w, 

0 (8) 
0 

v(t)/Gr ] 
[ T,m- T , -  Tsw- TI~- T~3/A [ 

Fa[F3(O)O-F,(r)-v,(t)] [ 
- km T~ I 
-kov~ j 

Thus, a linear model of the looper system is 

obtained from a feedback linearization algorithm 

as follows : 

[STEP 1] Since Kronecker's indices of the non- 

linear system of Eq. (8) are ) (1=3 and ) (2=2  

respectively, the nonlinear model can be lin- 

earizable by feedback. It is satisfied that 

(i) dim (Ax~=_t) = 5  

(ii) A;, ( 0 < i ~ X ~ x - - 2 )  

are involutive distributions in which the dimen- 

sions are constant, and denotes an invariant dis- 

tribution. 

Note that the condition (i) guarantees con- 

trollabili ty of the system under a state feedback or 

a coordinate transformation. The condition (ii) is 

a necessary and sufficient condition for the exist- 

ence of scalar seed functions h i ( x ) ( l ~ i ~ m )  
such that 

LgL}hi(x) =0,  l K i ~ m ,  O < l ~ x i - 2  (9) 

where m is 2 as the number of inputs and L 

denotes Lie derivative. 

[STEP 2] Seed functions hi(x) satisfying Eq. 

(9) are respectively determined as follows : 

hi(x) =O=zL h2(x)=r=~ 

[STEP 3] Using the seed functions given in 

STEP 2, a coordinate transformation z = S  (x) is 

obtained by Eq. (10). I o 
z= = z] =[ L~&(x) = 1 (10) 

I h~(x) ~-r A 
g [ Lfh2 (x) r 

A 

[STEP 4] A linearization feedback 

u=a(x) +g(x) v 

is given from Eq. (11) as follows: 

+ i 11) U= i u 

Then, a,(x) and ¢?(x) are given by 

[ LgL~'-lhl (x) 
a(x) = -  

LgLXm-lhr,, (x) 

5(x) = 
LgL~j"-' h,,, (x) 

LX"h,,,(x) 

Thus, the linearization feedback for Eq. (8) is 
obtained by Eq. (12) as follows: 
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u=a(x) + B(x) v (12) 

= 

I t ,  o ]  a/x/=/k,, , / 
l°k l 

where K i  and Qi, i = I ,  2, 3, 4, 5 are given by 

K,. 
K~= 
K, 
K~ 

&ll 

_ axsJ 

" 1 f .  a&(O) , aT,~(O) , 8T~(0) I- 

cl 
A 
1 

A 
0 

- a .A  

l ~ axz r, 8F, ( r) = aA = - ' ' - ~ V -  
8x3 FI'F3(O) 

-F~ 

_ axs 

[STEP 5] By applying an input u of Eq. (12) to 
the nonlinear system of Eq. (8), the feedback 
linearization model of  the looper is obtained by 

z=Az+Bv  
(13) 

y = C z  

where, the system coefficients 4 , / ~  and are given 
as follows : 

l '°°il ~ 0 1 0  
A =  0 0 0  , 

0 0 0  
L O O O O O J  

C=[10 ° ° ° ° 1  0 0 1 0  

LO IA 

(14) 

[STEP 6] Since all the eigenvalues of fli in Eq. 
(14) are zero, the linear model is unstable. Thus, 
a compensator is added to the linearized system 
of Eq. (13) as shown in Fig. 4. Using constant co- 
efficients C~, Eq. (12) is reconstructed as follows: 

u,=a(x) +¢(x) ( -  ' ' Crew, + vi) 

I ~ i < m ,  O < l < S i - I  
(15) 

where coefficients C~ are determined by a t r i a  
l-and-error method (Lee, 2001). Thus, ~ in Eq. 
(14) must be replaced by A in Eq. (16). 

J 0 I 0 0 0 
0 0 I 0 0 

A =  - C o  ~ - C ~  - C ~  0 0 

0 0 0 0 1 
0 0 0 - C~ - C1 z 

(16) 

4. M o d e l  V a l i d a t i o n  by  C o m p u t e r  

S i m u l a t i o n  

The dynamic characteristics and the usefulness 
of the linear model obtained in Section 3 is ev- 
aluated. First, the feedback linearization model is 
compared with the nonlinear model. Second, the 
usefulness is evaluated by analysing the perfor- 
mances of an ILQ control system developed from 
the feedback linearization model. 

4.1 V a l i d a t i o n  o f  a f e e d b a c k  l i n e a r i z a t i o n  

model  

In this section, the feedback linearization mo- 
del is compared with the nonlinear model per- 
forming computer simulation. The looper system 
is considered as a looper located between 5 and 6 
stands. The operating points of a looper angle 
and a strip tension are 18 ° and 7.1 MPa, respec- 
tively. Details of  each parameters are also given in 
Table !. 

Figure 5 represents outputs of a nonlinear 
model and two linearization models obtained 
using Tayior's series and static feedback. It is 
clearly shown from the Fig. 5 that the linear 
model by Taylor's linearization model does not 
correspond with the nonlinear model. However, 
the feedback linearization model matches well 
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Table 1 Parameter values of a looper system 

parameter value parameter value 

Ll[mm] 612.4 w[mm] 1300 

n0Imm] 184 h[mm] 3.13 

d[mm] 184 Wr[kg] 225 

a[mm] 2185.2 Wa[kg] 1655 

b[mm] 3314.8 E[kg/mm 2] 7.8 × 10 -~ 

40 [ -A~ ~ "  Non4 inear  system 

[ A -  A .., Tmylor 's I lneadzat lon 
3o 

.................. 

'°rjNon-tlnear system 

41 = .,- T ip / logs IJne~izat ion "I ' ,  ............................................................................................ , , , , , , , , , 

0 05 I 1 .S 2 2.5 3 3.5 4 4.5 5 
Time [se¢] 

Fig. 5 Outputs of linear models by Talor series and 
static feedback 

with the nonlinear model. When LCC input Zzm 

and ASR input ve are varied within the range 

of +--40% at each operating point value, Figs. 6 

and 7 represent the outputs of the feedback lin- 

earization model and the nonlinear model, re- 

spectively. Figures 6 and 7 show that the feedback 

linearization model has a good correspondence 

with the nonlinear model. 

Note that the nonlinear dynamics of the looper 

system is characterized as follows: Fig. 6 shows 

that strip tension and looper angle also increase 

as the LCC input (Tzm) increases. However, strip 

tension is not affected by the input (re) of ASR. 

And the chattering phenomenon of the looper 

appeared accordingly as the looper angle de- 

creases. Figure 7 shows that the strip tension and 

looper angle also decrease as the speed difference 

between the two main work rolls increases, which 
is opposite to the results shown in Figs. 6 and 7. 

In particular, it is shown that strip tension is 

strongly influenced by the speed difference of 
main work rolls. 

=[ , , . , , /H igh  I.put 
~'~. J / ~ / O p e r a t l n g p o l r t t l n p u t  I . . . .  I 

o o o 05 1 1.5 2 25 a 35 4 4s 

~ 6  Ing point input 
421 ~ L o w l n  =L pu t  

0 I i i i t i i i i i i 
0 o,s i is  ~ zs 3 3s 4 a.s s 

Time [mec] 

Fig. 6 Outputs according to variations of LCC input 
T,m 

~ ' 4 0 r  H I ~, ~ I g h l n p u t  
~=_ / ~ \  ~ / Operating point i npu t  1 __  ;;~J I 

 Low'"PUt , - ,  

,,J 0 05 16 2 25 3 36 45 5 

.~ 12 r 1 -  H igh  Input  . 
 ,0L _. JJ o p . r a ,  o g p o , n t , n p =  

i ,l  V L, ,nput 

"rirao [mecl 

Fig. 7 

, 4n5 t 4 5 

Outputs according to variations of ASR input 

/)e 

As a result, it is noted that the strip tension is 

more sensitive to the speed difference between two 

main work rolls than the motor torque of the 

looper. 

4.2 Usefulness  of the feedback l inearization 
model 

An ILQ looper control system using the feed- 

back linearization model is designed. And the 

usefulness for linear control of the looper is 

evaluated. The details on the design algorithms of 

an ILQ controller are referred to the reference 
(Kim and Hwang, 2002). 

Figure 8 shows the outputs of an ILQ looper 

control system. Solid l ine(-)  and dotted l ine ( - - )  

represent outputs of control systems based on 
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_ TLM 
101/ ~=-" FBL 

Sol] . . . .  
0 0.5 1 1.5 

~o [ r',, ..,_.. ~ ~ T t . e  
! Ii 

i i i 

215 3 31s , ,is s 

Fig. 8 

a n I I 

2 21s 3 ~is , ,'s s 
lqme tzecl 

Outputs of an ILQ control system based on 
linear models by Taylor series and static 
feedback 

x I0 e 
U 1Or 

8 og & o.'2 o13 
x 10 r 

21-/ / 

0 

Fig. 9 

& ols ols o~ 

i 

o, o.2 o.3 o, & oi~ oi~ 
Time [see] 

Outputs inputs of an ILQ control system 
based on linear models by Taylor series and 
static feedback 

linear models by static feedback, and Taylor  se- 

ries, respectively. It is clearly shown from Fig. 8 

that the ILQ control system has more efficient 

command-fol lowing performance than the system 
based on Taylor  linearization model. Note that 

the strip tension is controlled very efficiently in 

the model by static feedback and Taylor  series. 

Figure 9 shows the control input of  an ILQ 

control system. Figure 9 shows that control input 

of the ILQ control system using the feedback 

linearization model is larger than that based on 
Taylor linearization model. This fact indicates 

that the control input depends on the performance 

of the ILQ control system. In other words, control 

input can be adjustable according to the design 

specifications of  the ILQ control system. Control  

input has nothing to do with a mathematical 

model, in general. In results, linear controller of 

the looper in hot strip mills developed from this 

study is more efficient than that using Taylor  

series. 

5.  C o n c l u s i o n s  

This paper proposed a new linear model of the 

looper system using static feedback linearization 

technique. The results show that the linear model 

using static feedback well approximates non- 

linearties of the looper. Futhermore, the model is 

very efficient for designing a linear controller of 

the looper system. However, hardware load can 

be excessive because the states of the nonlinear 

system must be continuously measured. A future 

research to solve this hardware problem is strong- 

ly suggested. 
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